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Abstract. For Time Series forecasting, we use a method called Empirical Mode
Decomposition (EMD), which is adaptive and highly efficient at identifying
embedded structures. EMD allows the decomposition of one-dimensional signal
into intrinsic oscillatory modes. The components, called Intrinsic Mode Func-
tions (IMF), give more information for forecasting in Artificial Neural Net-
works (ANNs). Genetic Algorithm (GA) is a search process based on the laws
of natural selection and genetics; it has processes of Selection, Mutation and
Crossover to reach a good solution. We apply GA to find the optimal structures
(topologies) of ANNSs; here the ANN (phenotype) is encoded to form the ge-
nome (genotype). The encoding process was made using Direct Encoding. The
results show that ANNs with IMF-like inputs have better performance that
ANNSs with raw data-like inputs.

1 Introduction

Artificial Neural Networks have been used to forecast Time Series (TS), but the
search of optimal structure takes a lot of time and somectimes we do not find a good
structure that could give a better result. For this reason in this paper we use Genetic
Algorithm (GA) to automatically find the optimal topology of ANNs. The phenotype
is encoded as a bit string. Direct Encoding Scheme (DES) is used to encode the phe-
notype into genotype; DES specify in the genome every connection and node that will
appear in the phenotype.

The representation of an ANN is composed of four matrices (Inputs, Bias Connect,
Layer Connect, and Nodes per Layer). Each row of the matrix is concatenated, to
form a bit string (a part of the genome). Then GA has four inputs, each one will be
processed with his basic operations (Selection, Mutation, and Crossover). The GA has
to evaluate every member of the population with one fitness function, taking every
genome (every member of the population) and decoding it to form the phenotype (the
four matrices that represent the ANN). When we have the phenotype, we can train the
network and measure its performance. In this paper we used the Average Error (AE)-
and Maximum Error (ME)-like fitness. EMD is a new nonlinear technique that gives
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more information on a signal. It can be a useful time series analysis tool; for this rea-
son we apply EMD-like inputs in the ANNs to obtain a good forecasting.

The comparison in this paper is made between IMF and raw data-like inputs to the
ANN designed by a GA, with AE and ME obtained from the different test sets and
simulated ANN.

This paper is organized as follows. In Section 2 we describe the implementation of
GA with ANNs. In Section 3 we present the EMD. In Section 4 we show the result of
the computer simulation. Finally, we give the conclusions in Section 5.

2 Genetic Algorithm for Designing ANNs Topologies

GA is a method for solving optimization problems. It is based on natural selection,
simulating the biological evolution. A GA at each step modifies a population. It se-
lects individuals (parents) at random from the current population and uses them to
produce children for the next generation. Since the algorithm gives preference to best
parents, after several generations the population "evolves" toward an optimal solu-
tion.

To evolve ANNs we have to encode the phenotype. Here we use Direct Encoding

_heme: we specify in the genome every connection and node that will appear in the
phenotype (binary matrices). Figure 1 show the cycle of the GA to design ANNSs.
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Offspring Trained ANN
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Recombination
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......... Learning Component

Fig. 1. Evolutionary Design of Neural Networks [3].

2.1 Parameters of the Genetic Algorithm

The GA uses three main types of rules at each step to create the next generation: Se-
lection rules choose parents for the next generation basing on their fitness; Crossover
rules combine two parents to form children for the next generation; Mutation rules
apply random changes to individual children.
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There are other functions such as the following. Fitness scaling converts the raw
fitness scores (the value returned by the fitness function) into values in a range that is
suitable for the selection function. Reproduction specifies how the genetic algorithm
creates children for the next generation; it can be Elite fraction, which specifies the
number of individuals that are guaranteed to survive to the next generation or Cross-
over fraction, which specifies the fraction of the next generation produced by cross-
over.

There are some stopping criteria to finish the GA, such as the following: Genera-
tions—to stop when the maximum number of iterations is reached; Time limit—to
stop the algorithm after a certain time running. Fitness limit: if GA reaches a certain
fitness value, etcetera. Our stopping criteria were set to 100 generations with 20 indi-
vidual from each population; the population type is bit string, the Fitness Scaling is
Rank function, the Selections is Stochastic uniform function, the Mutation is Gaus-
sian function, and the Crossover is Scattered function.

2.2 ANN?’s Parameters

When the GA has to evaluate a member of the population, it calls the Fitness Func-
tion, takes the genome and decodes it in the phenotype (ANN). Then GA trains the
Network to obtain the fitness value. When this is finished, the ANN is simulated with
a set of data not previously seen by the ANN (test set). We used AE and ME to esti-
mate the fitness, this value is returned to GA for continuation of the evolution. The
number of epochs used in the training phase is varied because we do not know the
current size of the network and if the epochs are too numerous, we will have over-
fitting, or otherwise, the ANN will not reach its bets performance because of too few
epochs.

The mean square error (MSE) of the ANN has one problem: in case of over-fitting
the MSE is close to zero, and the forecasting will be wrong, because the network
learned the training set. For this reason we decided to use the Average Error and
Maximum Error as others fitness measures. The training algorithm for the ANNs is
the Levenberg-Marquardt algorithm; with Linear Transfer Functions in output layers
and Tan-Sigmoid in hidden layers. The genome consists of four variables represent-
ing Inputs, Bias Connections, Layer Connections, and Nodes per Layer; with this we
can build the ANN to train it.

2.3 Encode & Decode

Our phenotype consists of four matrices, which represent the network (Direct Encod-
ing Scheme); all lines of a matrix are concatenated to form variables of the genome,
see Fig. 2.

The first matrix of the phenotype is the Inputs, see Fig. 2, where its size is Minput
(layers by number of input variables). The second is Bias Connections that represents
whether or not the layer has a bias, Mbiasconnect (layers by 1). The third is Layer
Connections that represent the connection between nodes Mlayerconnect (layer by
layer). The fourth is the Nodes per Layer Mnode/layer (layer-1 by 3); 3 bits to permit



104 V. Landassuri-Moreno, J. Figueroa-Nazuno

maximum of seven nodes per layer. The lines of these four matrices are concatenated,
each one representing one variable. These are introduced as the genome of GA. In the
matrix Mnode/layer we put three bits to restrict the size of the network; its size is
layer-1 by 3.

Theoretical works which show that a single hidden layer is sufficient for ANNs to
approximate any complex nonlinear function with any desired accuracy [6, 8]. Most
authors use only one hidden layer to forecast. However, one-hidden-layer networks
may require a very large number of hidden nodes, which is not desirable since the
training time and the network generalization ability will degrade. Two-hidden-layer
networks may provide more benefits for some type of problems [1]. Several authors
address this problem and consider more than one hidden layer (usually two hidden
layers) [16]. Here we permit more hidden layers.

FromUnit: 1 2 3 4 § 6
ToUnit ¢ 0 0 0 O O 0 —= 000000
2 0o 0 0 0 0 0 ——>000000
3 11 0 0 0 ] ——>110001
4 1 1 0 0 0 1 110001
5 0o 0 1 1 0 001101
Connectivity Constraint Matrix l l, l{ ‘L J

0000000000000110001110001001101
Bit-string Genotype

Fig. 2. Encoding of genotype from phenotype (Input matrix). The 1’s represent connections
between inputs variables to nodes, e.g., (3, 1) stands for connection from variable | to node 3,

and (3, 6) for connection form variable 6 to node 3.

3 Empirical Mode Decomposition

The Empirical Mode Decomposition was introduced by Huang ef al. in 1998 [12].
The idea of this technique is to divide a signal x(¢) into a sum of functions satisfying
an assumption: they have at least two extrema, one maximum and one minimum. The

method essentially involves tow steps:

1. Two smooth splines are constructed connecting all the maxima of X(1), respec-
tively, to get its upper envelope Xmax(f) and Xmin(?). The extrema are found by de-
termining the change of sign of the derivative of the signal. All the data points
should be covered by the upper and lower envelopes.

2. The mean of the two cnvelopes is subtracted from the data to get a difference sig-
nal Xi(1),

X max (’._)_;“_L" min(f) D)

While it satisfies the criteria of an intrinsic mode function, this process is repcated.
The first IMF C,(¢) is obtained afier a certain number of iterations limited for standard

Xu()=X(1)-
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deviation (SD), computed for two consecutives shifting results. In our experiments
SD is set to 0.3. The original signal can be reconstructed using the following equation
where r, is the residue.

X(0=3.C)+r) @)

s

Another way to explain how the empirical mode decomposition works is as fol-
lows: it picks up the highest frequency oscillation that remains in the signal. Thus,
locally, each IMF contains lower frequency oscillations than the one extracted before.
This property can be very useful to pick up frequency changes; since a change will
appear even more clearly at the level of an IMF [10]. Fig. 3 shows one signal with its
eight IMFs.
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Fig. 3. Daily Maximum Temperatures in Melbourne, original data and IMF 1-8 from Australia,
1981-1990. (Source: Australian Bureau of Meteorology.)

4 Results
All ANNs of the GA were trained to forecast one step ahead. We used some Time

Series to prove the performance of GA to design ANNs with IMF and without it (raw
data). The Time Series were:
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Meteorology: Daily Maximum Temperatures in Melbourne (DMaxTM); Daily
Minimum Temperatures in Melbourne (DMinTM); Daily Precipitation, Hverav-
ellir (DPH); Micro-Economic: Daily Moming Gold Prices (DMGP). Hydrologi-
cal: Annual Minimum Level of Niel River (AMIinLNR); Water Level of Corpus
Christi, Texas, Estuary (WLCC).

All the time series have one variable, the only case is WLCC that have six vari-
ables (pressure, wind speed, wind direction, significant wave height, Dominant wave
period and mean wave directions). This time series forecasting has the best perform-
ance, with smallest AE and ME.

In some cases with the AE, the performance of the network was very good, but the
Series forecast had many jumps, crossing the real data (test set); this causes many
partial errors was zero or close to zero, and when all errors were averaged, the AE
was very small with respect to all variations.

In Tables 1 and 2 we show the results obtained with AE, and in Tables 3 and 4 the
results with ME, ¢.g., of network’s format: fb[7 3 1] is a feedback network with three
layers and seven nodes in the first layer, three nodes in second layer and one node in
the output layer; if the network does not have the suffix “fb,” this means that it is a
feed-forward network.

The matrices of Layer connections are represented as in Fig..2, where (3, 1) repre-
sents the connection of the layer 1 to 3, or (1, 3) represents the connection of layer 3
to 1 (feedback); in the following matrices, every line of the matrix is separated by
semicolon. The best network obtained is marked in boldface.

Table 1. Result of simulation with IMF and Average Error.

Time Serie AE Network Bias Layer Connect Epochs
Connect
DMaxTM 26022  fbj641) (1;1; 1] {000;110;110] 42
DMinTM 1.5024  fb[221] (R AR [001;110;010) 60
DPH 19534  fb[771) (1;1;1] {000;110;110] 59
DMGP 3.3267 b4 1] (1;1] {o1;10] 68
AMiInLNR 02998  fb[71] ;1) [00;11] 57
WLCC 00582  fb[431] [1:0:1] [001;100;101] 81

Table 2. Result of simulation with Raw data and Average Error.

Time Serie AE Network Ccl?rll?\sec " Layer Connect Epochs
DMaxTM 43116  f[73 1] (151 [001;100;010) 113
DMinTM 1.8775  fb[64 1) [1:0;1] {000;110;110] 41
DPH 27118 {5 1) (1:1] {01;10) 100
DMGP 25932 fb[(731] (1;1;0] {001;100;010) 6
AMiInLNR 06929  fb[71] (1;1] {01;10) 109

WLCC 0.0578 [61) (1:1] [00;10] 250
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Table 3. Result of simulation with IMF data and Maximum Error.

Time Serie ME Network Bias Layer Connect  Epochs
Connect
DMaxTM 8.3562 fbl43 1] ;51 [001;100;101] 11
DMinTM 3.5664  fb[641) (1;11] [000;110;110} 15
DPH 17851  [71) [1;1] (00;10] 100
DMGP 11.783 b4 1) [1;1) [01:10] 47
AMinLNR 1.3782 fb[64 1] (1;1;0] [000;110;110] 21
WLCC 02366  fb[43 1] [1:0;1] [001;100;101] 1
Table 4. Result of simulation with Raw data and Maximum Error.
Time Serie ME Network Bigs Layer Connect Epochs
Connect
DMaxTM 15.804  [441] (1] [000;100;010] 100
DMinTM 59309  (71] T [1;0] (00;10) 250
DPH 21.6 (71] [:n [00;10) 150
1;1; 0000;1010;
DMGP 89345  fb[7631)] E;'” En 00;0010] 200
AMInLNR 23641  f[221] (5] [00%;110,010] 17
WLCC 03227  f[221) (1) [001;110;010) 50

‘NCXt, we presented the results obtained for the Annual Minimum level of Niel
Rlver.. As can be observed, without IMF the network cannot give a good forccasnpg,
see Fig. 4. Here IMF and AE slightly outperform Fig. 5. In fig. 6 the best forecasting

obtained with IMF and ME is shown.
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Fig. 4. Forecasting with raw data and AE = 0.6929 (] step ahead).
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Fig. 5. Forecasting with IMF data and AE = 0.2998 (1 step ahcad). Annual Minimum level of
Niel River.
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Fig. 6. Forecasting with IMF data and ME = 1.3782 (1 step ahead). The better forecasting for
Annual Minimum level of Niel River.

Fig. 7 presents the best forecasting for WLCC whit raw data and AE, the experi-

ment with IMF and ME are too similar, but the complexity of the network was very
high. Thus we consider the best the data of the Fig 7.
We can see four TS with IMF, which give the best performance (DMaxTM,
DMinTM, DPH, and AMInLNR) and the others two, with raw data (WLCC and
DMGP). However, we can consider that WLCC is better with IMF, too, because the
results are very similar for IMF and raw data. In general IMF gives good results.
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Fig. 7. The better forecasting with Raw data and AE = 0.0578 (1 step ahead).
Water Level for the Corpus Christi, Texas, Estuary.

5 Conclusions

As our results show, IMF data as input to the network is better than raw data. How-
ever, as in Water level of Corpus Christy (WLCC) example, the network with raw
data and AE provides the best forecasting. If we have a sufficient number of variables
that affect, directly or indirectly, the phenomena that we want to predict, then we will
have a better forecasting. The only problem is the following: when the signal is di-
vided in its Intrinsic Mode Functions, the variables are too numerous for the network.
As in WLCC with IMF and ME, the forecasting is very similar, but the complexity of
the network was larger than the network with raw data and AE.

In DMGP the better forecast was obtained by the network with raw data and ME,
comparing with the network of IMF and AE. It has bad predictions in the last points.
We conclude that dynamic time series can affect the networks and become a problem
to find a good structure with GA.

The networks obtained by the GA were training with the same test data with 3, 6,
12, 24, 48, and 72 steps ahead; but the error was worse than the one obtained with
one step ahead. This means that the GA can find a good network for dynamic time
series presented, and the network cannot learn a different dynamics. If we want time
series forecasting with another step ahead, we have to run the GA again. We can
apply IMF to improve forecasting if we have a small group of variables of the phe-
nomena, but it is also convenient to use some measures of fitness. We can see in the
results that GA with ANNSs is a good tool to find structures, and using IMF provides
better forecasting in some cases.
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